Skip to main content

Table 2 Multivariable logistic regression analysis assessing the risk factors of digital games and social media addiction

From: A cross-sectional descriptive analysis of technology addiction in adolescents: associations with food addiction, emotional eating, and body weight status

Risk estimates (Addicted/Non-addicted)

β

Wald

p*

Odds Ratio

95% Confidence Interval

Lower

Upper

Game Addiction Scalea

 Age (years)

0.194

7.723

0.005

1.214

1.059

1.392

 Sex (boy)

1.428

75.045

 < 0.001

4.171

3.019

5.761

 Body mass index Z-score

0.173

8.485

0.004

1.189

1.058

1.335

 Mother’s age (years)

−0.033

2.214

0.137

0.968

0.926

1.011

 Father’s age (years)

0.035

2.816

0.093

1.036

0.994

1.079

 Mother's job (housewife)

−0.201

1.452

0.228

0.818

0.589

1.134

 Father's job

 

4.458

0.108

   

 Self-employment

−0.631

3.255

0.071

0.532

0.268

1.056

 Officer/worker

−0.399

1.176

0.278

0.671

0.327

1.380

 Income status

 

1.418

0.492

   

 Low

0.308

0.774

0.379

1.360

0.685

2.701

 High

0.180

0.768

0.381

1.197

0.801

1.788

Social Media Disorder Scalea

 Age (years)

0.383

7.889

0.005

1.467

1.123

1.917

 Body mass index Z-score

0.271

7.430

0.006

1.312

1.079

1.594

 Father’s age (years)

−0.039

2.617

0.106

0.962

0.917

1.008

 Father's job

 

4.114

0.128

   

 Self-employment

−0.848

2.598

0.107

0.428

0.153

1.201

 Officer/worker

−0.432

0.609

0.435

0.649

0.220

1.921

 Income status

 

1.584

0.453

   

 Low

−1.237

1.316

0.251

0.290

0.035

2.404

 High

0.148

0.210

0.646

1.159

0.617

2.179

  1. *p-trend < 0.001; Nagelkerke R2 = 14.4% (n = 1318) and 6.9% (n = 457) for Game Addiction Scale and Social Media Disorder Scale, respectively
  2. aReference categories are “girl” for sex, “employed” for mother's job, “retired” for father's job, and “moderate” for income status