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Abstract
Background Abnormal kidney function is associated with adverse outcomes in patients with type 2 diabetes 
mellitus (T2DM). However, the evidence between kidney function and mortality among Chinese patients with T2DM 
were still limited.

Methods This cohort study included 19,919 participants with baseline T2DM from 2013 to 2014 in Jiangsu, China. 
Serum estimated glomerular filtration rate (eGFR), urea, and uric acid were measured at baseline, and Cox regression 
models were used to evaluate hazard ratios (HRs) and 95% confidential intervals (95%CIs) of all-cause and cause-
specific mortality. Restricted cubic splines were used to analyze dose-response relationships, and we explored the 
best cut-off values by receiver operating characteristic (ROC) curves.

Results During a median follow-up of 9.77 years, 4,428 deaths occurred, including 1,542 (34.8%) due to 
cardiovascular disease (CVD), and 1,074 (24.3%) due to cancer. Compared to lowest quintile level (Q1), the highest 
quintile (Q5) of eGFR was negatively associated with all-cause (HR = 0.67, 95%CI: 0.58–0.77) and CVD mortality 
(HR = 0.57, 95%CI = 0.44–0.75). The higher levels of urea and uric acid were positively associated with all-cause 
mortality (Q5 vs. Q1: HR = 1.27, 95%CI: 1.16–1.39; HR = 1.21, 95%CI: 1.10–1.34), with an overall “U-shaped” dose-
response relationships. Moreover, higher urea was negatively associated with cancer mortality (Q5 vs. Q1: HR = 0.79, 
95%CI: 0.66–0.95). The best cut-off values with all-cause mortality were 88.50 ml/min/1.73m2, 6.95 mmol/L and 342.50 
µmol/L for eGFR, urea, and uric acid, respectively.
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Introduction
Diabetes mellitus (DM) is one of the most common 
chronic diseases worldwide. According to the data of 
International Diabetes Federation (IDF) in 2021, there 
were 573  million people suffer from diabetes in the 
world, of which more than 90% were type 2 diabetes mel-
litus (T2DM) [1]. In 2019, the age-standardized mortality 
rate of T2DM was 18.49 per 100,000, and may increase 
to 19.1 by 2030–2034 [2]. Approximately 30% of T2DM 
cases were reported in China, as a leading cause of mor-
tality among Chinese [3]. Consequently, T2DM imposes 
a serious burden of social healthcare.

However, the severe disease burden of diabetes pre-
dominantly arises from its complications or subsequent 
diseases [4]. Previous studies have found that cardiovas-
cular disease (CVD) is the leading cause of death among 
patients with T2DM [5], nearly half of patients die from 
CVD, and the CVD mortality is twice as high as that in 
the general population [6]. In addition, other diseases, 
such as cancers (e.g., colorectal, pancreatic, breast) and 
respiratory diseases, are also associated with T2DM 
and are common causes of death globally [7, 8]. Given 
the complexity of mortality causes among people with 
T2DM, exploring modifiable risk factors is conducive to 
preventing premature death and promoting long-term 
health benefits [9].

For patients with T2DM, long-term exposure to hyper-
glycemia can cause structural and functional changes in 
the kidneys, leading to reduced urinary function, excre-
tory dysfunction, metabolic retention, and other patho-
logical alterations [10]. Diabetic kidney disease (DKD) 
is a common chronic complication of T2DM and a 
major cause of chronic kidney disease and renal failure. 
Clinically, DKD is typically characterized by a reduced 
glomerular filtration rate (GFR) and the presence of albu-
minuria [11]. The filtering capacity of the glomerulus is 
commonly assessed by the estimated glomerular filtra-
tion rate (eGFR), which is independently associated with 
an increased risk of all-cause mortality [12]. The relation-
ship between eGFR and mortality due to T2DM has been 
explored in some previous studies, but the results were 
inconsistent because of different causes of death [13–15]. 
A Japanese cohort study showed when eGFR < 50  ml/
min/1.73m2, the risk of CVD mortality was significantly 
increased [16]. Another cohort study showed the simi-
lar results, but for other cause-specific mortality, current 
population studies provided insufficient evidence [17].

Kidney impairment is also manifested by abnormali-
ties in metabolic capacity. Serum urea and uric acid are 
degradation products of protein and purine nucleotide 
metabolism. Increased levels of urea and uric acid are 
both important indicators of abnormal kidney function, 
which can reflect reduced kidney filtration or reabsorp-
tion capacity [18, 19]. Uric acid is widely recognized as a 
risk factor for macrovascular complications, and associ-
ated with risk of different cancers [20]. Of note, hyperuri-
cemia is highly prevalent in people with diabetes, but the 
results of uric acid level with mortality for T2DM were 
still inconsistent.

In summary, the relationship between kidney func-
tion and mortality among people with T2DM has not 
been fully elucidated. To a certain extent, the etiology of 
diseases and the compositions of cause-specific mortal-
ity vary across regions and populations, and may lead to 
inconsistent results. With increasing incidence and mor-
tality, CVD and cancer are the leading causes of death in 
China, which are major public health problems [21, 22]. 
However, few researches on kidney function and mortal-
ity for Chinese patients. Considering the severe situation 
of T2DM in China, we explored the associations of kid-
ney function indexes (eGFR, serum urea and uric acid) 
with all-cause and cause-specific mortality for individuals 
with T2DM based on a prospective cohort.

Materials and methods
Study population
All participants were enrolled from the Comprehensive 
Research on the Prevention and Control of the Diabetes 
(CRPCD) project in Jiangsu province, China. This proj-
ect is an ongoing prospective cohort study, and 20,340 
patients were recruited at baseline [23]. T2DM was 
defined according to the criteria of American Diabetes 
Association (ADA), diagnosed by fasting blood glucose 
(FBG) ≥ 7.0mmol/L, or hemoglobin A1c (HbA1c) ≥ 6.5%, 
or 2-hour blood glucose of oral glucose tolerant test 
(OGTT) ≥ 11.1 mmol/L, or random glucose ≥ 11.1 
mmol/L for patients with classic symptoms of hypergly-
cemia or hyperglycemic crisis [24].

Baseline survey was started in October 2013 and com-
pleted in July 2014. A face-to-face questionnaire was 
performed to collect personal information, including 
demographic characteristics, daily lifestyles, personal his-
tory and family history of diseases. Participants were also 
asked to complete physical medical examination (height, 
weight, waist circumstance and blood pressure) and 

Conclusion We found abnormal kidney function was associated with mortality among people with T2DM. More 
clinical researches are needed to validate the effects and cut-off values of kidney function on mortality risk for T2DM 
prevention and management.

Keywords Type 2 diabetes mellitus, Mortality, Kidney function, Cardiovascular disease, Cancer



Page 3 of 11He et al. Journal of Health, Population and Nutrition           (2025) 44:77 

blood sample collection. We excluded 287 participants 
with missing baseline information, 134 with missing 
measurement data or biological samples. Finally, 19,919 
participants were included (Supplementary Fig. 1).

Kidney function measurement
Fasting blood samples were collected at the same time 
of baseline survey, and then immediately coagulated to 
obtain serum. All participants were required to fast for 
at least 8  hours before blood collection. Serum samples 
were measured in the laboratory at KingMed Diagnostics 
(Nanjing, China). The eGFR level (ml/min/1.73m2) was 
calculated according to serum creatinine (SCr) concen-
tration by the MDRD formula [25].

Scr (µmol/L), urea (mmol/L), and uric acid (µmol/L) 
were measured by Jaffé assay, enzyme-linked immu-
nosorbent assay (ELISA) and uricase-peroxidase assay, 
respectively. All indexes were measured by the automatic 
chemistry analyzer (Roche Cobas C701, Roche Diagnos-
tics, Shanghai Ltd).

Death outcome ascertainment
All participants were followed-up from the date of base-
line enrollment until September 30, 2023. Cause of death 
data were obtained from the death surveillance system 
of the Jiangsu Provincial Center for Disease Control and 
Prevention, which is operated by the Jiangsu National 
Health Commission [26]. This system provided medi-
cally validated information on mortality. In cases where 
the cause of death was complex, we used the underlying 
cause rather than the immediate cause for determination.

We used the underlying causes as the basis for par-
ticipants. Death information was recorded according to 
International Classification of Diseases 10th reversion 
(ICD-10), mainly included all-cause mortality (A00-
Z99), CVD mortality (I00-I79), cancer mortality (C00-
C97), chronic respiratory disease mortality (J30-J98), 
and others. We focused on CVD-related mortality, which 
includes coronary heart disease (CHD, I20-25) and stroke 
(I60-I64), and classified them into subtypes: myocardial 
infarction (MI, I21), hemorrhagic stroke (HS, I61), and 
ischemic stroke (IS, I63). Cancer deaths were showed by 
common subtypes: esophageal cancer (C15), stomach 
cancer (C16), colorectal cancer (C18-C20), liver cancer 
(C22), and lung cancer (C34).

Covariates assessment
Covariates were defined by baseline questionnaire infor-
mation. Smoker was defined as smoked more than 100 
cigarettes during personal life, and smoking status was 
categorized as never, pervious and current smoking [27]. 
Alcohol consumption was defined as drank at least 1 
time per month on average for more than 1 year. Physi-
cal activity was calculated through MET intensities, and 

converted to daily average MET (MET-h/d) [28]. Further-
more, body mass index (BMI) was calculated by dividing 
weight in kilograms by the square of height in meters (kg/
m2). The duration of T2DM was defined by the date of 
first diagnosed with T2DM until baseline survey.

Statistical analysis
We divided the participants into quintiles of eGFR to 
describe baseline characteristics. Baseline continuous 
variables were described as means ± standard deviation 
(SDs), and categorical variables were expressed as con-
stituent ratios (n, %). Follow-up period was calculated as 
the period from baseline survey to death date or follow-
up deadline. Continuous variables were analyzed using 
one-way ANOVA for normally distributed data or the 
Kruskal-Wallis test for non-normally distributed data, 
while categorical variables were analyzed using the χ2 
test.

We used Cox regression models to evaluate the asso-
ciations of kidney function indexes with all-cause mortal-
ity and cause-specific mortality. Hazard ratios (HRs) and 
95% confidential intervals (CIs) were calculated accord-
ing to the quintiles of three indexes. We applied three 
models to explore the associations by adjusting for dif-
ferent covariates. Model1 was only adjusted for age and 
sex. Model2 was additionally adjusted for education level, 
annual household income, smoking, alcohol consump-
tion, BMI, waist circumstance, physical activity (MET-
h/d), personal medical history (hypertension, stroke, 
CHD, cancer, dyslipidemia, and kidney diseases), and 
family history (stroke, CHD, diabetes, hypertension, and 
dyslipidemia). Moreover, Model3 was further adjusted 
for T2DM duration, oral antidiabetic medication and 
insulin injection.

We performed restricted cubic splines (RCS) to assess 
the dose-response relationships of kidney function 
indexes with mortality risk. We used 4 knots to fit the 
curve for each index and set the P20 of each indicator 
as the reference point with an HR of 1.00. Specifically, 
during the analysis of the dose-response relationship, 
we excluded data below the 1st percentile and above the 
99th percentile for each indicator to minimize the impact 
of extreme values on the results. We also performed 
stratified analysis according to covariates (e.g. age, sex, 
smoking, alcohol consumption, T2DM duration, etc.). 
We evaluated the interactions between the levels of three 
indexes and stratified covariates by likelihood ratio test.

In addition, sensitivity analysis was then performed 
by excluding participants who died within first 2 years 
of follow-up, who died due to accident events, whose 
T2DM duration ≤ 1 year, and participants with cancer at 
baseline. Additionally, we also excluded individuals with 
diagnosed kidney disease prior to participating in the 
baseline survey. Considering the complexity of mortality, 
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we applied competing risk models to assess the compet-
ing effects of CVD and cancer mortality versus other 
cause-specific mortality [29]. We further explored their 
best cut-off values, aim to provide a reference for clini-
cal precise prediction of mortality risk specific to patients 
with T2DM. The best cut-off values were explored 
by receiver operating characteristic (ROC) curves by 
Youden index [30]. Besides, we also analyzed the cut-off 
values on cause-specific mortality, including CVD, can-
cer, and chronic respiratory diseases.

All analysis were conducted by R software (version 
4.4.0, R Foundation for Statistical Computing.). Overall, 
two-sided P-value < 0.05 was considered as statistically 
significant.

Results
Demographic characteristics of participants
Baseline characteristics of T2DM participants were 
showed in Table  1. The mean age was 62.9 years, and 
the proportion of females were higher than males. Par-
ticipants with lower eGFR levels had longer T2DM dura-
tions, higher serum urea and lower urea acid levels (All 
P < 0.05). Most patients had oral antidiabetic medication 
history, and as eGFR levels decreased, the proportion of 
hypertension also increased.

During a median follow-up of 9.77 years (interquartile: 
9.63–9.82 years), 4,428 participants died, of which 2,024 
were males (45.7%) and 2,404 were females (54.3%). We 
listed cause-specific mortality, which included 1,542 
CVD deaths (7.74%), 1,074 cancer deaths (5.39%), 278 
due to chronic respiratory diseases (1.40%), and 1,534 

Table 1 Baseline characteristics of T2DM participants (N = 19919)
Baseline characteristics eGFR (ml/min/1.73m2) P-value

Q1 (< 70.62) Q2 (70.62~) Q3 (84.67~) Q4 (93.07~) Q5 (≥ 100.34)
No. of participants 3985 3979 3979 3992 3984 /
Age (years) 69.5 (8.7) 66.9 (8.2) 65.5 (7.6) 60.7 (5.9) 51.8 (7.6) < 0.001
Female, n (%) 2403 (60.3) 2257 (56.7) 2359 (59.3) 2465 (61.8) 2624 (65.9) < 0.001
BMI (kg/m2) 25.43 (3.53) 25.41 (3.42) 25.21 (3.53) 25.20 (3.37) 25.41 (3.48) 0.001
Waist circumstance (cm) 87.39 (9.86) 86.92 (9.52) 86.32 (9.56) 85.83 (9.26) 85.51 (9.52) < 0.001
Diabetes duration (years) 7.47 (6.76) 6.51 (5.86) 5.91 (5.61) 5.66 (4.98) 4.96 (4.54) < 0.001
Physical activity (MET-h/d) 8.09 (11.75) 10.17 (14.43) 11.00 (15.38) 12.69 (15.64) 14.27 (18.06) < 0.001
Smoking, n (%) † < 0.001
Never 2884 (72.4) 2787 (70.0) 2813 (70.7) 2818 (70.6) 2985 (74.9)
Quit 777 (19.5) 894 (22.5) 877 (22.0) 976 (24.5) 832 (20.9)
Current 295 (7.4) 270 (6.8) 264 (6.6) 170 (4.3) 134 (3.4)
Alcohol consumption, n (%) † < 0.001
Never 3235 (81.2) 3050 (76.7) 3074 (77.3) 3050 (76.4) 3103 (77.9)
Quit 489 (12.3) 678 (17.0) 703 (17.7) 770 (19.3) 730 (18.3)
Current 251 (6.3) 240 (6.0) 192 (4.83) 157 (3.9) 137 (3.4)
Oral antidiabetic medication, n (%) 2744 (68.9) 2714 (68.2) 2704 (68.0) 2823 (70.7) 2824 (70.9) 0.006
Insulin injection, n (%) 839 (21.1) 570 (14.3) 499 (12.5) 513 (12.9) 594 (14.9) 0.923
Baseline self-reported diseases
Hypertension, n (%) 2800 (70.3) 2536 (63.7) 2325 (58.4) 2115 (53.0) 1530 (38.4) < 0.001
Dyslipidemia, n (%) 688 (17.3) 677 (17.0) 652 (16.4) 759 (19.0) 681 (17.1) 0.002
Cancer, n (%) 112 (2.8) 109 (2.7) 119 (3.0) 99 (2.5) 73 (1.8) 0.011
Stroke, n (%) 690 (17.3) 568 (14.3) 524 (13.2) 393 (9.8) 234 (5.9) < 0.001
CHD, n (%) 580 (14.6) 469 (11.8) 399 (10.0) 300 (7.5) 180 (4.5) < 0.001
Kidney diseases, n (%) 281 (7.1) 140 (3.5) 132 (3.3) 123 (3.1) 110 (2.8) < 0.001
Family history
Hypertension, n (%) 1511 (37.9) 1654 (41.6) 1621 (40.7) 1690 (42.3) 1705 (42.8) < 0.001
Dyslipidemia, n (%) 103 (2.6) 121 (3.0) 107 (2.7) 120 (3.0) 130 (3.3) 0.261
Diabetes, n (%) 800 (20.1) 874 (22.0) 903 (22.7) 1021 (25.6) 1115 (28.0) < 0.001
Stroke, n (%) 237 (6.0) 295 (7.4) 260 (6.5) 269 (6.7) 280 (7.0) 0.007
CHD, n (%) 140 (3.5) 191 (4.8) 148 (3.7) 182 (4.6) 195 (4.9) < 0.001
Urea (mmol/L) 7.79 (3.03) 6.05 (1.43) 5.77 (1.40) 5.68 (1.37) 5.45 (1.37) < 0.001
Uric acid (µmol/L) 389.95 (115.43) 324.17 (76.22) 302.70 (71.51) 289.70 (69.33) 269.91 (69.38) < 0.001
† The total proportion < 100% for participants who chose “unclear” in relatively small proportion

Continuous variables are presented as mean ± standard deviation, while categorical variables are expressed as frequency (%)
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due to other diseases (7.70%). Each cause-specific mor-
tality was showed in Supplementary Table 1.

Associations between kidney function indexes and 
mortality
We defined the lowest quintiles (Q1) of eGFR, urea 
and uric acid as the reference groups. As showed in 
Table  2, compared to Q1, the higher level of eGFR was 
significantly negative association with all-cause mortal-
ity (HRs < 1.00). However, negative associations were 
found in the Q2 (HR = 0.87, 95%CI: 0.79–0.96) and Q3 
(HR = 0.89, 95%CI: 0.81–0.98) of urea, but positive asso-
ciation was found in the highest quintile (Q5 vs. Q1: 
HR = 1.27, 95%CI: 1.16–1.39). Moreover, similar trend 
was also showed in uric acid (Q3 vs. Q1: HR = 0.88, 
95%CI: 0.79–0.97; Q5 vs. Q1: HR = 1.21, 95%CI: 1.10–
1.34, respectively).

Subsequently, we analyzed the associations of kidney 
function indexes and cause-specific mortality. Consistent 
with the results for all-cause mortality, increased eGFR 
level reduced CVD mortality risk. Positive associations 
were found in highest quintiles of urea (HR = 1.48, 95%CI: 
1.27–1.73) and uric acid (HR = 1.39, 95%CI: 1.18–1.64). 
Specially, the negative association was found in increased 
urea level and cancer mortality. For chronic respiratory 

disease mortality, we observed negative associations for 
all indexes (Supplementary Table 2).

In addition, the negative associations were found for 
higher eGFR level with significant trend due to CVD 
mortality in subtypes. Whereas, we found increased urea 
and uric acid were negative associated with HS mortality 
and IS mortality, respectively (Supplementary Table 3). 
Specially, the highest level of eGFR increased the risk of 
stomach cancer mortality (HR = 2.00, 95%CI: 1.04–3.82), 
while increased uric acid decreased liver cancer mortal-
ity (Q3 vs. Q1: HR = 0.54, 95%CI: 0.33–0.90). Similarly, 
higher levels of uric acid appeared to decrease mortality 
risk due to colorectal and liver cancer (Supplementary 
Table 4).

Dose-response relationships
As showed in Fig.  1A, when using Q1 as the refer-
ence, the overall risk of all-cause mortality decreased 
with increasing eGFR level (HR < 1.00). However, when 
eGFR > 100  ml/min/1.73m2, the mortality risk slightly 
increased but remained < 1.00. In addition, the dose-
response relationships between urea, uric acid, and all-
cause mortality decreased initially and then increased; 
furthermore, significant positive association was 
observed when their concentrations continued to rise 

Table 2 Associations of baseline kidney function indexes with all-cause mortality among participants
Serum indexes No. of death/Person-years HR (95% CI) †

Model 1 Model 2 Model 3
eGFR (ml/min/1.73m2)
Q1 (< 70.62) 1733/31,420 ref ref ref
Q2 (70.62~) 1054/34,745 0.66 (0.61–0.71) 0.67 (0.62–0.73) 0.69 (0.64–0.75)
Q3 (84.67~) 865/35,587 0.61 (0.56–0.67) 0.62 (0.57–0.67) 0.64 (0.59–0.70)
Q4 (93.07~) 476/37,173 0.51 (0.46–0.57) 0.52 (0.46–0.58) 0.53 (0.47–0.59)
Q5 (≥ 100.34) 300/37,660 0.65 (0.56–0.75) 0.65 (0.56–0.75) 0.67 (0.58–0.77)
P-trend < 0.001 < 0.001 < 0.001
Urea (mmol/L)
Q1 (< 4.70) 834/38,695 ref ref ref
Q2 (4.70~) 774/37,473 0.88 (0.80–0.98) 0.89 (0.81–0.98) 0.87 (0.79–0.96)
Q3 (5.50~) 689/32,647 0.88 (0.80–0.98) 0.89 (0.81–0.99) 0.89 (0.81–0.98)
Q4 (6.20~) 876/36,109 0.93 (0.84–1.02) 0.95 (0.86–1.04) 0.91 (0.83–1.01)
Q5 (≥ 7.30) 1255/31,662 1.35 (1.24–1.48) 1.36 (1.24–1.48) 1.27 (1.16–1.39)
P-trend < 0.001 < 0.001 < 0.001
Uric acid (µmol/L)
Q1 (< 242.00) 739/36,151 ref ref ref
Q2 (242.00~) 727/36,694 0.81 (0.73–0.90) 0.82 (0.74–0.91) 0.83 (0.75–0.92)
Q3 (284.00~) 786/35,427 0.83 (0.75–0.91) 0.85 (0.77–0.95) 0.88 (0.79–0.97)
Q4 (325.00~) 923/35,049 0.88 (0.79–0.97) 0.91 (0.83–1.01) 0.93 (0.84–1.03)
Q5 (≥ 379.00) 1253/33,264 1.11 (1.01–1.22) 1.17 (1.07–1.29) 1.21 (1.10–1.34)
P-trend < 0.001 < 0.001 < 0.001
Abbreviations: HR, hazard ratio; CI, confidential interval
† HRs (95% CIs) were calculated by adjusting covariates. Model 1: Adjusted for age and sex. Model 2: Additionally adjusted for education level, annual household 
income, smoking, alcohol consumption, BMI, WC, physical activity, hypertension, stroke, CHD, cancer, dyslipidemia, kidney diseases, family history of stroke, family 
history of CHD, family history of diabetes, family history of hypertension and family history of dyslipidemia. Model 3: Additionally adjusted for diabetes duration, 
oral antidiabetic medication and insulin injection
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(Fig.  1B and C). To specific-cause mortality (CVD, can-
cer and respiratory disease), we found the dose-response 
relationships were consistent with Cox regression for 
each index (Supplementary Fig. 2-Fig. 4).

Stratified analysis
To further explore whether the association between kid-
ney function indexes and mortality risk varies across 
different populations, we conducted a stratified analy-
sis based on age, sex, smoking status, alcohol consump-
tion, physical activity, and diabetes duration (Fig. 2). As 
compared to Q1, the risk for highest level of eGFR was 
not significant in males (HR = 0.85, 95%CI: 0.69–1.04), 

smokers (HR = 0.65, 95%CI: 0.37–1.01), and alcohol 
drinkers (HR = 0.73, 95%CI: 0.44–1.23). On the other 
hand, significant interactions were observed between 
eGFR and age, sex, and physical activity. For urea, signifi-
cant interactions were observed after stratifying by age 
and alcohol consumption; while uric acid showed sig-
nificant interactions with sex, smoking, and alcohol con-
sumption (Pfor interaction < 0.05).

Furthermore, negative associations between higher 
eGFR levels and CVD mortality were observed across 
subgroups stratified by age, sex, T2DM duration, smok-
ing status, and alcohol consumption (Supplementary 
Table 5). Besides, the highest urea levels were positively 

Fig. 2 Forest plots for stratified analysis of all-cause mortality according to kidney function indexes among T2DM patients

 

Fig. 1 The RCS curves of non-linear dose-response relationships between kidney function indexes and all-cause mortality among T2DM patients. (A) The 
relationship of eGFR level with all-cause mortality risk. (B) The relationship of serum urea level with all-cause mortality risk. (C) The relationship of serum 
uric acid level with all-cause mortality risk. The red line represents the hazard ratio (HR), while the blue lines indicate the 95% confidence interval (CI).
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associated with the risk of CVD mortality. In addition, 
urea level showed negative associations with cancer mor-
tality in people who were < 60 years, non-smokers, none 
of alcohol consumption, and with T2DM duration ≥ 5 
years (Supplementary Table 6). We observed that eGFR 
was negatively associated with chronic respiratory dis-
ease mortality in those aged ≥ 60 years, while high urea 
levels were negatively associated in those aged < 60 years 
old (Supplementary Table 7).

Sensitivity analysis
In the sensitivity analysis, we found that when exclud-
ing participants who died within the first 2 years of fol-
low-up (n = 570) and those with a diabetes duration ≤ 1 
year (n = 4,251), higher eGFR levels remained negatively 
associated with all-cause mortality when using Q1 as 
the reference group. Besides, we further excluded those 
with baseline kidney disease (n = 786), those with base-
line cancer (n = 512), and who died in accidents (n = 237), 
similar associations were still found. We also found the 
significant associations between highest level of urea and 
mortality risk by sensitivity analysis. As compared to Q1, 
higher levels of uric acid showed negative associations 
with mortality risk (Supplementary Table 8).

Moreover, we used competing risk model to estimate 
the “competing” effect of cause-specific mortality. We 
found the similar associations of eGFR, urea and uric 
acid for CVD mortality, but there might be a positive 
association between eGFR and cancer mortality risk (Q3 
vs. Q1: HR = 1.21, 95%CI: 1.01–1.45). After controlling 
other cause-specific deaths, higher levels of urea could 
reduce cancer mortality risk, while uric acid was not sig-
nificantly associated with cancer mortality (Supplemen-
tary Table 9).

Best cut-off values of kidney function indexes for mortality
We explored the best cut-off values of eGFR, urea and 
uric acid, to evaluate specific references for mortality 
among participants. We used ROC curves to find the best 
values according to Youden index. In Fig. 3, the best cut-
off values for each index due to all-cause mortality were 
88.50 ml/min/1.73m2, 6.95 mmol/L, and 342.50 µmol/L, 
and we also reported the true positive rate, false positive 
rate and area under curve (AUC) for each index.

Furthermore, we also explored the cut-off values 
for cause-specific mortality. As listed in Supplemen-
tary Table 10, the eGFR cut-off values for CVD, cancer, 
and chronic respiratory diseases are 87.68, 91.27, and 
92.89  ml/min/1.73m2, respectively. In addition, the cut-
off values of blood urea for these specific causes of death 
are 6.95, 6.05, and 6.55mmol/L, while those of uric acid 
are 322.50, 328.50, and 367.50µmol/L, respectively.

Discussion
Serum biomarkers, i.e. creatinine, urea and uric acid, 
have been commonly used to indicate kidney function 
in clinical diagnosis [31]. In this cohort study, we found 
eGFR showed significant negative association with all-
cause mortality and CVD mortality. Meanwhile, highest 
levels of urea and uric acid might increase the risk of all-
cause mortality, but some negative associations were also 
existed for different cause-specific mortality.

Previous studies have demonstrated the association 
between eGFR and mortality risk due to different dis-
eases. Another cohort study reported that eGFR < 60 ml/
min/1.73m2 was associated with higher stroke risk for 
individuals with T2DM (HR = 2.53, 95%CI = 1.27–5.03) 
[32]. Caplan et al. suggested that when eGFR decreased 
by nearly 40%, the mortality risk could increase 
about 98% among patients with T2DM (HR = 1.98, 
95%CI = 1.87–2.10) [33]. The results from Kailuan 
cohort also reported an approximately 1.50-fold higher 

Fig. 3 The best cut-off values of each kidney function index for all-cause mortality risk by using ROC curves
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risk of all-cause mortality among T2DM cases with 
eGFR < 45  ml/min/1.73m2, but no significant effect on 
CVD mortality [34].

The close relationship between kidney function and 
heart or cerebral pathological conditions has been 
explored. Due to T2DM, hyperglycemia increases the 
levels of reactive oxygen species (ROS) and advanced 
glycosylation end-products (AGE) in human micro-
environment, leading to vasoconstriction [35]. Oxida-
tive stress increases the formation and accumulation of 
vascular plaques, which is thought to be one of the ini-
tial mechanisms that lead to atherosclerosis [36]. Bobot 
et al. also suggested that kidney severity was associated 
with worse prognosis and death in stroke, and this asso-
ciation persisted by adjusting T2DM [37]. Our results 
were generally consistent with previous studies, and fur-
ther demonstrated the ability of eGFR as a biomarker for 
CVD mortality risk due to T2DM.

There seems to be a lack of strong evidence for the 
association between eGFR and cancer mortality risk. 
Kitchlu et al. analyzed eGFR among CKD patients for 
cancer incidence, and found increased risk of bladder 
cancer and kidney cancer risk [38]. A Swedish study 
measured baseline eGFR among a large population and 
reported “U-shaped” relationship for risk of skin cancer, 
prostate cancer, and urinary tract cancers [39]. T2DM 
was thought to be associated with risk of chronic respi-
ratory diseases (e.g. asthma or COPD), and the data 
of China Health and Retirement Longitudinal Study 
(CHARLS) showed a strong relationship between lung 
function and eGFR [40, 41]. Zhang et al. concluded 
that chronic inflammation and oxidative stress caused 
by T2DM induces kidney disease and COPD [42]. Our 
results also reflected the protective effect of higher level 
of eGFR with respiratory disease mortality with the trend 
was not significant, which due to small number of deaths 
in our cohort.

In addition to eGFR, serum urea and uric acid can 
reflect changes for metabolic ability for kidney. The level 
of urea depends on the rate of protein decomposition, 
the amount of protein intake and the excretory capacity 
of kidney [43]. We also found the significant increase in 
all-cause mortality when serum urea level ≥ 7.30 mmol/L, 
but the trend was opposite when urea < 6.20 mmol/L. Ele-
vated urea could lead to a reduction in the proliferation 
rate of human endothelial cells. Moreover, urea induced 
actin filament rearrangement, which were directly related 
to CVD [44]. However, the potential signaling pathways 
involved need to be explored in more researches.

When we distinguished types of diseases, increased 
urea showed negative association with cancer mor-
tality risk. Gao et al. evaluated the negative effect 
between urea and colorectal cancer risk in T2DM par-
ticipants (HR = 1.26, 95%CI: 1.13–1.41) [45]. Urea cycle 

is accomplished through urease, which can convert 
ingested nitrogen into urea for excretion. Animal experi-
ment have showed ablation of glutamine synthetase (GS) 
in the liver exacerbated hyperammonemia and promoted 
nonessential amino acids, which subsequently stimu-
lated the mechanistic target of rapamycin complex 1 
(mTORC1) to suppress liver cancer [46]. Among T2DM, 
related amino acids of urea cycle also showed higher 
expression, so the higher urea level may have an impor-
tant role in inhibiting development of liver cancer.

We evaluated the relationship between elevated uric 
acid levels and mortality outcomes. A previous cohort 
study in the Chinese population also found a “U-shaped” 
relationship between uric acid levels and mortality [47]. 
However, this association has not been widely validated 
in individuals with T2DM. For example, used the data 
of the National Health and Nutrition Examination Sur-
vey (NHANES), it was observed that compared to the 
lowest concentration group, higher uric acid levels were 
associated with an increased mortality risk in the T2DM 
population [48]. When uric acid is in a hydrophobic 
environment, its prooxidizability are enhanced, promot-
ing the involvement of oxidative stress in the pathology 
of CVD [49]. In a large Mendelian randomization study, 
it was found that higher uric acid concentration was 
indeed associated with an increased mortality rate from 
CHD [50]. The association of T2DM with hyperuricemia, 
chronic inflammation and cancer, suggest that uric acid 
may play an important role between T2DM and cancer 
development [51].

We further explored the cut-off values for uric acid to 
distinguish mortality risk due to T2DM. Honestly, there 
might be some differences between our analysis and pre-
vious studies. For instance, in the URic acid Right for 
heArt Health (URRAH) study, the cut-off value for uric 
acid in the T2DM population was reported as 261.11 
µmol/L, which is slightly lower than our findings [52]. 
This discrepancy could be attribute to racial differences 
between the two studies. Moreover, the cut-off value 
in the URRAH study was not specifically set for T2DM 
individuals but was rather based on the general popula-
tion [53].

We observed that the AUC values for blood urea and 
uric acid were low across different causes of death, sug-
gesting limited predictive ability for cause-specific mor-
tality. The significant nonlinear relationship between 
these indexes and mortality may explain the subopti-
mal predictive performance. Similar findings have been 
reported in previous studies, where blood urea also 
showed low AUC values for cause-specific mortality [53]. 
Additionally, this nonlinear trend has been documented 
in other studies, further highlighting the complex-
ity of these biomarkers in mortality prediction [54, 55]. 
Furthermore, blood urea and uric acid are nonspecific 
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biomarkers of kidney function, influenced by various 
factors such as the stage of kidney impairment, age, sex, 
diet, and other clinical conditions. While the AUC values 
may be relatively low, these biomarkers still hold clinical 
utility in identifying feasible risk thresholds for mortality 
assessment.

Our study had some strengths. Firstly, the participants 
were derived from the community rather than hospitals, 
making it more representative. Community populations 
typically reflected the general population’s health status, 
whereas hospital populations tended to be biased toward 
patients with severe conditions or specific diseases. Sec-
ondly, the mortality data was accurate, so we can clarify 
the cause of death for different diseases. Thirdly, all kid-
ney function indexes were measured in the same plat-
form, which effectively controlled the measurement bias. 
In addition, we used competing risk model to control 
other causes when analyzing cause-specific mortality, 
thus the results were stable and authentic. Meanwhile, 
we also explored the best cut-off values for each index, 
aiming to provide more accurate risk assessment criteria 
for clinical practice and help identify high-risk patients 
for timely intervention. However, several limitations were 
still existed. Firstly, we only used baseline measurement 
in this cohort study, however, kidney function tends to 
fluctuate over time due to factors such as disease pro-
gression, medication use, and acute illnesses. Future 
studies should incorporate repeated measurements to 
provide more robust evidence. Secondly, there are vari-
ous formulas for calculating eGFR, and some studies sug-
gest that the CKD-EPI formula provides a more accurate 
risk prediction factor. However, our study did not com-
pare different eGFR calculation formulas nor explore the 
potential impact of these formulas on the study results 
[56]. In addition, the decline in kidney function is not 
only defined by low eGFR levels but also includes the 
presence of albuminuria. However, our study did not col-
lect morning urine samples from the participants, there-
fore, data on albuminuria was not available. Furthermore, 
we excluded people with kidney disease at baseline in 
sensitivity analysis, but the sequence of kidney disease 
and T2DM was unclear. We were also unable to analyze 
some other causes of death, such as several types of can-
cer (including breast, cervical, bladder, and prostate can-
cer), due to the limited number of deaths. Additionally, 
this study was conducted in a province with advanced 
socioeconomic conditions in China, which may limit the 
generalizability of such findings to the entire Chinese 
population. Meanwhile, potential confounding cannot 
be completely eliminated. Finally, the deadline of follow-
up was 2023, encompassing the period of Covid-19 pan-
demic, which might exacerbate mortality for participants.

Conclusions
In conclusion, we found abnormal kidney function was 
associated with all-cause and cause-specific mortal-
ity among T2DM patients. More attention should be 
focused on lower eGFR, higher urea and uric acid to 
reduce the mortality. Future researches are needed to 
explore the mechanism with abnormal kidney function 
to cause-specific mortality.
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